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[1] We applied a satellite remote sensing–based evapotranspiration (ET) algorithm to
assess global terrestrial ET from 1983 to 2006. The algorithm quantifies canopy
transpiration and soil evaporation using a modified Penman‐Monteith approach with
biome‐specific canopy conductance determined from the normalized difference vegetation
index (NDVI) and quantifies open water evaporation using a Priestley‐Taylor approach.
These algorithms were applied globally using advanced very high resolution radiometer
(AVHRR) GIMMS NDVI, NCEP/NCAR Reanalysis (NNR) daily surface meteorology,
and NASA/GEWEX Surface Radiation Budget Release−3.0 solar radiation inputs. We
used observations from 34 FLUXNET tower sites to parameterize an NDVI‐based canopy
conductance model and then validated the global ET algorithm using measurements from
48 additional, independent flux towers. Two sets of monthly ET estimates at the tower
level, driven by in situ meteorological measurements and meteorology interpolated from
coarse resolution NNR meteorology reanalysis, agree favorably (root mean square error
(RMSE) = 13.0–15.3 mm month−1; R2 = 0.80–0.84) with observed tower fluxes from
globally representative land cover types. The global ET results capture observed spatial and
temporal variations at the global scale and also compare favorably (RMSE = 186.3 mm yr−1;
R2 = 0.80) with ET inferred from basin‐scale water balance calculations for 261 basins
covering 61% of the global vegetated area. The results of this study provide a relatively long
term global ET record with well‐quantified accuracy for assessing ET climatologies,
terrestrial water, and energy budgets and long‐term water cycle changes.
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1. Introduction

[2] Evapotranspiration (ET) is a major component of the
global water cycle and represents a critical link between
terrestrial water, carbon, and surface energy exchanges. The
world has experienced persistent climatic warming attributed
largely to human activities over the past century [Trenberth
et al., 2007], and the warming is projected to con-
tinue [Meehl et al., 2007]. Recent climatic changes have
altered the global water cycle and surface energy budget
[Huntington, 2006; Trenberth et al., 2007]. To better under-
stand these regional and global water balance changes, each
term in the terrestrial water balance equation,Ds = P − ET − R,
must be accurately measured or quantified. Precipitation (P)
and runoff (R) can be directly measured by in situ weather
stations and streamgauge networks. However, ET is inherently
difficult to measure and predict especially at large spatial
scales. Recent advances in retrieval algorithms and satellite
remote sensing technology now enable large‐scale mapping

and monitoring of ET [e.g., Cleugh et al., 2007; Fisher et al.,
2008;Mu et al., 2007; Zhang et al., 2009], P [e.g.,Hong et al.,
2005;Hsu et al., 1997;Huffman et al., 2007; Joyce et al., 2004;
Kummerow et al., 2001; Sorooshian et al., 2000], and water
storage (Ds) [Tapley et al., 2004]. However, basin‐scale water
budget closure is rarely, if ever, achieved due to large and
variable uncertainties and inconsistencies among the water
budget terms and associated products [Pan and Wood, 2006;
Sheffield et al., 2009; Ferguson et al., 2010]. Improved accu-
racy in quantifying the magnitude and variability of regional
and global water and energy fluxes, closing the water budget
worldwide and hence improving weather forecasting, climate,
and water availability assessments are the ultimate goals of
current water and energy cycle research.
[3] Remote sensing (RS), especially from polar‐orbiting

satellites, provides relatively frequent and spatially contig-
uous measurements for global monitoring of surface bio-
physical variables affecting ET, including albedo, vegetation
type, and density. There are a multitude of RS‐based ET
products derived from simplified process models [e.g.,
Monteith, 1972; Norman et al., 1995; Priestley and Taylor,
1972] driven by RS inputs [Anderson et al., 2008; Cleugh
et al., 2007; Fisher et al., 2008; Mu et al., 2007], ther-
mal RS‐based surface energy balance (SEB) approaches
[Bastiaanssen et al., 1998; Kalma and Jupp, 1990; Su,
2002], and empirical, vegetation index‐ET relationships,
i.e., the triangle method or its derivates [Gillies et al.,

1Flathead Lake Biological Station, University of Montana, Polson,
Montana, USA.

2Numerical Terradynamic Simulation Group, University of Montana,
Missoula, Montana, USA.

3NASA Ames Research Center, Moffett Field, California, USA.

Copyright 2010 by the American Geophysical Union.
0043‐1397/10/2009WR008800

WATER RESOURCES RESEARCH, VOL. 46, W09522, doi:10.1029/2009WR008800, 2010

W09522 1 of 21

http://dx.doi.org/10.1029/2009WR008800


1997; Nemani and Running, 1989; Nishida et al., 2003;
Q. Tang et al., 2009]. Comprehensive reviews of the his-
torical development and accuracies of in situ and RS‐based
ET estimation methods are provided elsewhere [e.g., Glenn
et al., 2007; Kalma et al., 2008]. The various RS‐based ET
methods have different spatial scales and domains, temporal
coverage, input requirements, and accuracies. However,
there is currently no continuous, long‐term (i.e., from the
early 1980s) satellite‐based global ET record available for
global change studies.
[4] Cleugh et al. [2007] proposed a methodology that

estimates 8 day evaporation at 1 km spatial resolution using
gridded meteorological fields and the Penman‐Monteith
(PM) equation [Monteith, 1965], where the surface con-
ductance term is a simple function of remotely sensed leaf
area index (LAI) from the Moderate Resolution Imaging
Spectrometer (MODIS). Mu et al. [2007] revised the surface
conductance model of Cleugh et al. [2007] to produce a
global ET algorithm by accounting for stomata response to
temperature and atmospheric humidity deficit and intro-
ducing a separate soil evaporation term not explicitly con-
sidered by Cleugh et al. [2007]. This algorithm was further
modified by incorporating surface meteorology retrievals
from AMSR‐E microwave remote sensing over the high
latitudes [Mu et al., 2009] and is experiencing other ongoing
improvements. Meanwhile, Leuning et al. [2008] developed
a biophysical, six‐parameter surface conductance model,
which can be reduced to a two‐parameter model, driven by
LAI to replace Cleugh et al.’s empirical surface conductance
model. The Leuning et al. model accounts for stomatal
conductance sensitivity to atmospheric humidity deficit and
light, and includes a simple term for soil evaporation; the ET
results derived using optimized parameters showed improved
performance relative to Cleugh et al.’s model in relation to
measurements from 15 global flux station sites. In a com-
panion study, Y. Zhang et al. [2008] optimized the parameters
of this model using steady state water balance estimates (P‐R)
from gauged catchments in Australia and applied themodel to
estimate catchment‐level evaporation. These studies show
favorable ET accuracy at both site and catchment levels
[Leuning et al., 2008; Y. Zhang et al., 2008]. However, this
approach is sensitive to uncertainty in LAI inputs [Leuning et
al., 2008]. It is also necessary to optimize the model para-
meters [Y. Zhang et al., 2008]; thus, additional parameter
optimization is likely to be needed for global application of
this approach. The Leuning et al. and Mu et al. models are
also limited by global LAI availability and accuracy in the
pre‐MODIS era (i.e., before 2000). Alternatively, the nor-
malized difference vegetation index (NDVI) is sensitive to
photosynthetic leaf area and calculated directly from satellite
sensor spectral reflectances. Unlike the downstream LAI
product, there are no model‐related errors in NDVI. The
NOAA advanced very high resolution radiometer (AVHRR)–
based NDVI record extends from 1981 to present and can be
used for global long‐term ET mapping since NDVI is sensi-
tive to vegetation structure and photosynthetic canopy cover.
The results of Cleugh et al. [2007], Mu et al. [2007], and
Leuning et al. [2008] show that the PM equation is a bio-
physically sound and robust framework for estimating daily
ET at regional to global scales using remotely sensed data.
[5] We developed a biome‐specific, NDVI‐based canopy

conductance model that accounts for stomata response to
temperature and atmospheric vapor pressure deficit and the

unique physiological characteristics of different biomes
[Zhang et al., 2009]. Canopy conductance is defined using
empirical relationships between potential surface conduc-
tance (g0) and NDVI and reduced by temperature and
moisture constraint multipliers. The canopy conductance
and NDVI functional relationships are derived for different
biomes using regional flux tower measurements and then
coupled with PM based canopy and soil evaporation models,
and a Priestly‐Taylor (PT)–based open water evaporation
model to determine the aggregated ET of a grid cell. This
approach was successfully applied to produce a long‐term
(1983–2005) daily ET record for the pan‐Arctic basin and
Alaska [Zhang et al., 2009]. These results showed generally
improved performance over Mu et al.’s global ET method
in relation to tower based meteorology from 14 sites re-
presenting regionally dominant biomes. However, the
northern biomes represent less than half of all global land
cover types. Moreover, NDVI and canopy conductance
relationships were only defined for four regionally domi-
nant biomes due to sparse regional tower eddy covariance
measurements.
[6] In this study, we extend our RS NDVI‐based ET algo-

rithm to the global domain and derive biome specific NDVI‐
based canopy conductance functions for all major global
biomes using surface energy fluxes and meteorology mea-
surements from the global FLUXNET tower network
[Baldocchi, 2008]. The objectives of this study are to (1) derive
biome‐specific NDVI‐based canopy conductance functions
for the major global biome types and correspondingly refine
the RS NDVI‐based ET algorithm for global applications and
(2) generate a global long‐term (1983–2006) daily ET record
with well‐quantified accuracy for studies on regional/global
water balances changes.

2. Theory

2.1. ET Algorithm Logic

[7] We extended an NDVI‐based ET algorithm developed
for the northern high latitudes in the work of Zhang et al.
[2009] to a global domain for this study. The core compo-
nents of the ET algorithm are similar to those of Zhang et al.
[2009], but with substantial algorithm modifications needed
for global applications, including (1) deriving biome‐specific
canopy conductance versus NDVI functions for the major
global biome types using daily eddy covariance and
associated meteorological measurements from globally dis-
tributed tower sites, (2) replacing the calculation of soil heat
flux and heat storage as a constant fraction of net radiation
with more physically based equations, (3) calculating ET for
mixed forest land cover types as a composite of component
ET values from the distinct growth forms (e.g., deciduous
versus evergreen) comprising this class rather than as a single
biome type.
[8] In our ET algorithm, energy at the surface of the earth

is governed by the surface energy balance equation,

Rn ¼ H þ �E þ G; ð1Þ

where Rn (W m−2) is the net radiation flux, H (W m−2) is the
surface sensible heat flux, lE (W m−2) is the surface latent
heat flux (LE), and G is the sum of the soil heat flux and
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heat storage in above‐ground biomass for vegetated areas or
heat storage in water bodies. Rn is calculated using

Rn ¼ Rns � Rnl ¼ 1� �ð ÞRs# � Rnl; ð2Þ

where Rns is net shortwave (i.e., solar) radiation, Rs# is
incoming shortwave radiation, a is surface albedo, and Rnl is
outgoing net longwave radiation. Rnl is calculated using the
method of Allen et al. [1998],

Rnl ¼ �
T 4
max;K þ T 4

min;K

2

" #
0:34� 0:14

ffiffiffiffi
ea

pð Þ 1:35
Rs#
Rso

� 0:35

� �
;

ð3Þ

where s is the Stefan‐Boltzmann constant (4.903 × 10−9 MJ
K−4 m−2 d−1), Tmax,K and Tmin,K are the daily maximum and
minimum air temperature in Kelvin, respectively, ea (Pa) is
the actual daily air water vapor pressure, and Rso (W m−2) is
clear‐sky incoming shortwave radiation.
[9] In our algorithm, we first identified open water body

and vegetated pixels using a remote sensing–derived global
land cover classification. For vegetated pixels, we used the
PM equation with a biome‐specific NDVI‐based canopy
conductance model to calculate vegetation transpiration and
a modified PM equation to calculate soil evaporation. We
used the PT method to calculate evaporation for water body
pixels.
2.1.1. Evapotranspiration for Vegetated Areas
[10] ET for vegetated areas is partitioned into soil evap-

oration and canopy transpiration by partitioning available
energy for ET using the fractional vegetation cover ( fc)
derived from satellite observed NDVI. Detailed information
about fc is available elsewhere [e.g., Mu et al., 2007]. The
available energy for ET (A: W m−2) is determined as the
difference between Rn and G. For vegetated areas, G is cal-
culated as a function ofRn and fc according to Su et al. [2001],

G ¼ Rn � Gc þ 1� fcð Þ � Gs � Gcð Þ½ �; ð4Þ

where Gc and Gs are the ratios of G to Rn for full vegetation
canopy and bare soil, respectively. Su et al. [2001] assumed
Gc and Gs as global constants, while we regarded Gc and Gs as
biome‐specific constants in this study.
[11] The A term is then linearly partitioned into available

energy components for the canopy (ACanopy: W m−2) and
soil surface (ASoil: W m−2) using fC such that

ACanopy ¼ A� fC; ð5Þ

ASoil ¼ A� 1� fCð Þ: ð6Þ

[12] The PM equation is used to calculate vegetation
transpiration as

�ECanopy ¼ DACanopy þ �CP esat � eað Þga
Dþ � 1þ ga=gsð Þ ; ð7Þ

where lECanopy(W m−2) is the latent heat flux of the canopy
(i.e., LECanopy) and l (J kg−1) is the latent heat of vapori-
zation; D = d (esat ) / dT (Pa K−1) and is the slope of the
curve relating saturated water vapor pressure (esat: Pa) to air
temperature (T: K); esat − e is equal to the vapor pressure

deficit (VPD: Pa); r (kg m−3) is the air density; CP (J kg−1

K−1) is the specific heat capacity of air; and ga (m s−1) is the
aerodynamic conductance. The psychrometric constant is
given by g = (Ma / Mw)(CpPair / l) where Ma (kg mol−1),
Mw (kg mol−1), and Pair (Pa) are the molecular mass of dry
air, the molecular mass of wet air, and the air pressure,
respectively. The gs (m s−1) term in the original PM equation
is the surface conductance. Since we use the PM equation to
calculate canopy transpiration in this section, the gs term is
identical to the canopy conductance (gc), where gc is cal-
culated using a biome‐specific NDVI‐based Jarvis‐Stewart‐
type canopy conductance model [Zhang et al., 2009],

gc ¼ g0 NDVIð Þ � m Tday
� �� m VPDð Þ; ð8Þ

where g0 (NDVI) is the biome‐dependent potential (i.e.,
maximum) value of gc, which is a function of NDVI; Tday
(°C) is the daylight average air temperature; m(Tday) is a
temperature stress factor and function of Tday; m(VDP) is a
water/moisture stress factor and function of VPD. The tem-
perature stress factor m(Tday) follows the equation detailed
by June et al. [2004] with an optimum temperature Topt,

m Tday
� �¼

0:01

exp � Tday � Topt
�

� �2
 !

0:01

8>>>>>>><
>>>>>>>:

Tday � Tclose min

Tclose min < Tday < Tclose max

Tday � Tclose max

;

ð9Þ

where Topt (°C) is a biome‐specific optimal air temperature
for photosynthesis; Tclose_min(°C) and Tclose_max(°C) are the
biome‐specific minimum and maximum critical tempera-
tures for stomatal closure and the effective cessation of plant
photosynthesis; b (°C) is a biome‐specific parameter and is
the difference in temperature from Topt at which temperature
stress factor falls to 0.37 (i.e., e−1). The m(VPD) term is
calculated as,

m VPDð Þ ¼

1:0

VPDclose � VPD

VPDclose � VPDopen

0:1

8>>>>>><
>>>>>>:

VPD � VPDopen

VPDopen < VPD < VPDclose

VPD � VPDclose

;

ð10Þ

where VPDopen (Pa) is the biome‐specific critical value of
VPD at which the canopy stomata are completely open;
VPDclose (Pa) is the biome‐specific critical value of VPD at
which canopy stomata are completely closed.
[13] Soil evaporation is calculated using the soil evapo-

ration equation from Mu et al. [2007] and Zhang et al.
[2009], which is a combination of an adjusted PM equa-
tion and the complementary relationship hypothesis
[Bouchet, 1963; Fisher et al., 2008]. The soil evaporation
equation and its auxiliary equations include,

�ESoil ¼ RH VPD=kð Þ DASoil þ �CPVPDga
Dþ � � ga = gtotc

; ð11Þ

ZHANG ET AL.: GLOBAL RECORD OF LAND SURFACE EVAPOTRANSPIRATION W09522W09522

3 of 21



ga ¼ gch þ grh; ð12Þ

grh ¼ 4:0� �� T 3
day

� �
= �CPð Þ; ð13Þ

gtotc ¼ gtot � Gcorr; ð14Þ

Gcorr ¼ 273:15þ Tday
293:15

� �
� 101300

Pair
; ð15Þ

where RH is the relative humidity of air with values between
0 and 1; RH(VPD/k) is a moisture constraint on soil evapo-
ration [Fisher et al., 2008], which is an index of soil water
deficit based on the complementary relationship of Bouchet
[1963] whereby surface moisture status is linked to and
reflects the evaporative demand of the atmosphere. The
assumption is that soil moisture is reflected in the adjacent
atmospheric moisture. k (Pa) is a parameter to fit the com-
plementary relationship and reflects the relative sensitivity
to VPD [Fisher et al., 2008]. In this study, considering the
possible impacts of different vegetation morphology and
root zone structure among different biomes on this com-
plementary relationship, we empirically adjusted the k
parameter for different vegetation types. The grh (m s−1)
term is the conductance to radiative heat transfer and is
calculated using equation (13) following Choudhury and
DiGirolamo [1998]. In equation (13), Tday is in Kelvin.
The gch (m s−1) term is the conductance to convective heat
transfer and is assumed to be equal to the boundary layer
conductance (gbl: m s−1) [Thornton, 1998]. In this study, we
assigned the gch and gbl terms as biome‐specific constants
by following Thornton [1998] and Mu et al. [2007]. The gtot
(m s−1) term is the total aerodynamic conductance to vapor
transport and the combination of surface and aerodynamic
conductance components. The gtotc (m s−1) term is the
corrected value of gtot from the standard conditions for
temperature and pressure (STP) using the correction coef-
ficient (Gcorr) following Jones [1992]. In this study, gtot is
adjusted by land cover class following Zhang et al. [2009].
[14] The mixed deciduous and evergreen forest (MF) land

cover class represents approximately 7% of the global
vegetated land area as defined by a global 500 m resolution
land cover map [Friedl et al., 2010]. For this study, deciduous
and evergreen components of the MF class were distin-
guished for the ET calculation. We first derived the relative
proportions of each forest type within MF pixels using
available satellite remote sensing–derived percentage of tree
cover products representing leaf longevity (evergreen and
deciduous) and leaf type (broadleaf and needleleaf) compo-
nents [DeFries et al., 2000a, 2000b]. We then used the above
canopy transpiration and soil evaporation algorithms to cal-
culate ET for each forest type and weighted the results to
produce composite ET values for each MF pixel.
2.1.2. Evaporation Over Water Bodies
[15] For water bodies, G is calculated as a function of air

temperature and effective water depth (DZ: m) for heat
exchange, based on the premise that water surface temper-
ature generally follows air temperature [e.g., Pilgrim et al.,
1998; Livingstone and Dokulil, 2001; Morrill et al., 2005],

G ¼ �W � cW � K � Tavg;i � Tavg;i�1

� ��DZ; ð16Þ

where rw (1.0 × 103 kg m−3) is the water density; cW
(4.186 J g−1 °C−1) is the specific heat of water; Tavg,i and
Tavg,i−1 are the daily average air temperatures for the
current day and previous day, respectively; and K is the
slope of the simple linear regression of water surface tem-
perature on air temperature and represents the ratio of water
temperature change to surface air temperature change.
Pilgrim et al. [1998] reported a slope of 0.82 for the linear
relationship between water temperature records and associ-
ated air temperature records in 39 Minnesota stream tem-
perature monitoring stations. Morrill et al. [2005] examined
the air temperature/stream water temperature relationship at a
geographically diverse set of streams and found that the
majority of streams showed a slope of 0.6–0.8 for the linear
regression between stream temperature and air temperature.
Therefore, we set K to the mean (0.7) of previously reported
values. The effective water depth is the uppermost well‐
mixed layer of the epilimnion and depends on morphology of
open water bodies and other climatic factors. The literature
suggests that the depth of epilimnion varies from tens of
centimeters to several meters [e.g., Mazumder et al., 1990].
To simplify, we set the value of DZ to 1.5 m in this study.
[16] The evaporation for open water pixels was then

calculated using the PT equation [Priestley and Taylor,
1972],

�EWater ¼ a
DA

Dþ �
; ð17Þ

where the PT coefficient a accounts for evaporation arising
from the atmospheric vapor pressure deficit in addition to
the equilibrium term and is set to 1.26 following Priestley
and Taylor [1972]. The PT coefficient of 1.26 is generally
valid for the saturated surface [Priestley and Taylor, 1972]
and is even valid for wet meadow [Stewart and Rouse,
1977] and well‐watered grass [Lhomme, 1997]. Therefore,
we adopted this approach to estimate evaporation for
smaller (length scales less than 8km) water bodies.

2.2. Biome‐Specific Potential Canopy Conductance
Versus NDVI Functions

[17] We used measured energy fluxes and daily meteo-
rology from eddy covariance flux towers (see section 3) with
corresponding NDVI time series from the AVHRR GIMMS
data set [Pinzon et al., 2005; Tucker et al., 2005] to establish
biome‐specific relationships between g0 and NDVI. We first
removed the calculated soil latent heat flux (LESoil or lESoil)
(method introduced in section 2.1.1) driven by in situ tower
meteorology from the tower LE measurements to determine
canopy latent heat flux (LECanopy or lECanopy). We then
derived the canopy conductance term (gc) from LECanopy and
the in situ tower meteorology using the rearranged PM
equation,

gc ¼ ga�LECanopy

DACanopy þ �CPVPDga � LECanopy Dþ �ð Þ : ð18Þ

[18] Because of lack of available vertical wind profile
measurements, we set values of ga as biome‐specific con-
stants based on evidence that the range of ga variability is
generally conservative over low wind speeds (e.g., ≤5 m s−1)
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and aerodynamically rough surfaces following Monteith and
Unsworth [2007]. Although the use of a constant ga can
introduce uncertainty into the ET estimates, this simplification
has been successfully applied for similar satellite based ET
mapping studies [e.g., Mu et al., 2007; Y. Zhang et al., 2008;
Zhang et al., 2009]. By substituting gc in equation (18) for
gc in equation (8) and rearranging the equation, we derived
the potential surface conductance as

g0 ¼ ga�LECanopy

DACanopy þ �CPVPDga � LECanopy Dþ �ð Þ	 
 � m Tday
� � � m VPDð Þ :

ð19Þ

[19] We (1) calculated daily g0 for the major global biome
types using daily surface meteorology and LE measure-
ments from selected representative flux towers within each
biome; (2) sorted the g0 series for each NDVI interval
(interval size = 0.04) in numeric order and removed outliers
falling below the 10th percentile and above the 90th per-
centile for g0; (3) calculated average daily values of g0 and
NDVI for each NDVI interval with sufficient (≥10) sam-
ples; and (4) fitted the scatter plots of g0 versus NDVI using
sigmoid response functions for each biome type following
Zhang et al. [2009],

g0 NDVIð Þ ¼ 1= b1 þ b2 � exp �b3 � NDVIð Þ½ � þ b4; ð20Þ

where b1 (s m−1), b2 (s m−1), b3 (dimensionless), and b4
(m s−1) are empirical parameters. Considering the constraint
g0(0) = 0, the b4 parameter is equal to −1/(b1 + b2 ). To
analyze the uncertainty in the fitted relationship of g0 versus
NDVI, we applied an adaptive Markov chain Monte Carlo
(MCMC) method [Haario et al., 2006] with a chain of
length 6000 to produce the 99% posterior distribution of the
fitted relationship of g0 versus NDVI for each biome type.

2.3. Global Implementation of the ET Algorithm

[20] We applied the above ET algorithm with parame-
terized, biome‐specific NDVI‐derived canopy conductance
models to calculate global ET at the pixel level. We chose
the 8 km resolution of the GIMMS NDVI product as the
final resolution of the global ET calculations. To adequately
consider land cover heterogeneity within the 8 km grid cells,
we calculated the fractional coverage of every vegetation
type and open water body within each 8 km grid cell using
the 500 m MODIS‐IGBP Collection 5 global land cover
product [Friedl et al., 2010] and applied the above ET
algorithm to calculate ET for every vegetation and open
water class within each grid cell. Finally, we used the land
cover fractions as weights to sum the ET values of each land
cover type within the 8 km grid cell to produce the 8 km
area‐average ET.

3. Data and Methods

3.1. Eddy Covariance Flux Towers

[21] We utilized tower eddy covariance and meteoro-
logical data from 82 tower sites of the FLUXNET data
archive (http://www.fluxnet.ornl.gov/); these sites were split
into separate algorithm development and parameterization
(34 towers) and validation (48 towers) data sets representing
the major global biome types (Figure 1). The flux tower site
information is summarized in Tables 1 and 2. These sites are
distributed across the world in all continents and global
vegetation types (Figure 1 and Tables 1 and 2). The tower
sites represent 10 of the 12 IGBP global vegetation types,
including evergreen needleleaf forest (ENF), evergreen
broadleaf forest (EBF), deciduous broadleaf forest (DBF),
mixed forest (MF), closed shrubland (CSH), open shrubland
(OSH), grassland (GRS), cropland (CRP), woody savanna
(WSV), and savanna (SV). Considering the geographically
wide distribution of the ENF biome type and the impacts of

Figure 1. Locations of the flux tower sites used for ET algorithm development (34 sites) and validation
(48 sites).
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different climate zones on leaf longevity and associated
biophysical functioning [Kikuzawa, 1995; Reich et al., 2007],
we stratified the global ENF category into temperate ENF
(TENF) and boreal/cold ENF (BENF) types according to a
multiyear average of frost‐free days (TFrost‐free: days). Frost‐
free days are defined as those days with above‐zero (°C)
daily minimum air temperature and are calculated from the
NCEP/NCAR Reanalysis (NNR) surface meteorology. The
ENF pixels are classified as TENF when TFrost‐free exceeds
7 months (212 days); otherwise, the ENF pixels are classified
as BENF.
[22] The following criteria were used to select flux tower

sites for this study in order of decreasing importance: (1)
at least two sites must be available for each vegetation
type; (2) the selected sites should have data covering at
least two growing seasons; and (3) the vegetation types
within the tower footprints must be the same as the
dominant vegetation type of the overlying 8 km resolution
grid cell. The 82 tower sites were divided into two data
sets representing an algorithm development set with 34 sites
and an algorithm validation set with 48 sites. The algorithm
development set was used to derive the biome‐specific
NDVI‐based canopy conductance functions, while the val-
idation set was used for independent validation of the global
ET algorithm.

3.2. Satellite and Meteorological Inputs

[23] In this study, the satellite‐based data inputs to the
global ET algorithm include NDVI, land cover, tree cover
continuous fields, and short‐wave radiation terms, while the
remaining daily surface meteorology inputs were obtained
from the global NNR product [Kalnay et al., 1996; Kistler
et al., 2001]. We derived a daily NDVI series for each 8 km
pixel using temporal linear interpolation of adjacent semi-
monthly values of the 8 km semimonthly AVHRR GIMMS
NDVI product [Pinzon et al., 2005; Tucker et al., 2005]. The
daily linear interpolation approach is a relatively simple, but
effective, means for producing daily time series of satellite‐
observed vegetation state variables including fraction of
photosynthetically active radiation (FPAR) and LAI and has
been successfully applied for vegetation based analyses of
the AVHRR series [e.g., Kimball et al., 2006, 2007; Zhang
et al., 2007].
[24] The 500 m NASA MODIS Collection 5 IGBP global

land cover classification (henceforth abbreviated as the
500 m MODIS‐IGBP land cover) [Friedl et al., 2010] was
used to determine the dominant land cover and fractional
vegetation type within each 8 km AVHRR GIMMS grid cell.
We then used the 1 km AVHRR Tree Cover Continuous
Fields data [DeFries et al., 2000a, 2000b] to derive forest
type (i.e., evergreen or deciduous) fractional cover of 8 km

Table 1. Details of the 34 FLUXNET Tower Sites Used for Deriving Biome‐Specific NDVI‐Based Canopy Conductance Functions for
Representative Global Biome Typesa

LC Site Abbr. Years Latitude Longitude Country References

BENF (8 sites) FIHYY 1996–2000 61.85 24.28 Finland Suni et al. [2003]
SWFLA 1996–1998 64.23 19.77 Sweden Lindroth [2000a]
CANS2 2001–2005 55.91 −98.52 Canada Litvak et al. [2003]
CANS4 2002–2004 55.91 −98.38 Canada Litvak et al. [2003]
CANS5 2001–2005 55.86 −98.49 Canada Litvak et al. [2003]
CAOBS 1994–2006 55.88 −98.48 Canada Dunn and Wofsy [2006]
USHO1 1996–2004 45.20 −68.74 USA Hollinger et al. [2004]
USWRC 1998–2006 45.82 −121.95 USA Falk et al. [2008]

TENF (4 sites) USSP2 1998–2004 29.76 −82.24 USA Powell et al. [2008]
USNC1 2004–2006 35.81 −76.71 USA DeForest et al. [2006]
USBLO 1999–2006 38.90 −120.63 USA Goldstein et al. [2000]
USME5 2000–2002 44.44 −121.57 USA Irvine et al. [2007]

EBF (3 sites) BRSA1 2002–2005 −2.86 −54.96 Brazil Hutyra et al. [2007]
AUTUM 2001–2006 −35.66 148.15 Australia Leuning et al. [2005]
AUWAC 2005–2006 −37.43 145.19 Australia Wood et al. [2008]

DBF (2 sites) USHA1 1992–2006 42.54 −72.17 USA Urbanski et al. [2007]
USMOZ 2004–2006 38.74 −92.20 USA Gu et al. [2007]

CSH (1 site) USLOS 2000–2006 46.08 −89.98 USA Cook et al. [2004]
OSH (2 sites) USATQ 1999–2006 70.47 −157.41 USA Kwon et al. [2006]

USBRW 1999–2001 71.32 −156.63 USA Oechel et al. [2000]
WSV (2 sites) USSRM 2004–2006 31.82 −110.87 USA Scott [2010]

AUHOW 2001–2006 −12.50 131.15 Australia Beringer et al. [2007]
SV (2 sites) USFR2 2004–2006 29.95 −98.00 USA Heinsch et al. [2004]

BOMAU 1999–2001 −19.92 23.59 Botswana Veenendaal et al. [2004]
GRS (4 sites) USARB 2005–2006 35.55 −98.04 USA Fischer et al. [2007]

USAUD 2002–2006 31.59 −110.51 USA Wilson and Myers [2007]
USFPE 2000–2006 48.31 −105.10 USA Wylie et al. [2007]
USWLR 2001–2004 37.52 −96.86 USA Coulter et al. [2006]

CRP (6 sites) FRBOR 1996–1998 44.70 0.77 France Berbigier and Lousteau [2000]
USARM 2003–2006 36.61 −97.49 USA Fischer et al. [2007]
USBO1 1996–2006 40.01 −88.29 USA Meyers and Hollinger [2004]
USNE1 2001–2006 41.17 −96.48 USA Suyker and Verma [2008]
USNE2 2001–2006 41.16 −96.47 USA Suyker and Verma [2009]
USRO3 2004–2006 44.72 −93.09 USA Griffis et al. [2007]

aThe land cover classification includes boreal and temperature evergreen needleleaf forest (BENF and TENF), evergreen broadleaf forest (EBF),
deciduous broadleaf forest (DBF), mixed forest (MF), closed shrubland (CSH), open shrubland (OSH), woody savanna (WSV), savanna (SV),
grassland (GRS), and cropland (CRP) vegetation types.
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grid cells containing MF pixels distinguished by the 500 m
MODIS‐IGBP land cover classification.
[25] The daily net, incoming, and clear‐sky incoming

shortwave solar radiation terms (Rns, Rs+, and Rso) were
derived from the NASA World Climate Research
Programme/Global Energy and Water‐Cycle Experiment
(WCRP/GEWEX) Surface Radiation Budget (SRB) Release
−3.0 data sets with 1.0° × 1.0° resolution using the Pinker/
Laszlo shortwave algorithm [Pinker and Laszlo, 1992].
Daily meteorological data including maximum, minimum,
and average air temperatures (Tmax, Tmin, and Tavg: °C) and
air water vapor pressure (ea: Pa) were derived from the
National Centers for Environmental Prediction‐National
Center for Atmospheric Research (NCEP‐NCAR) Reanal-
ysis (NNR) [Kalnay et al., 1996; Kistler et al., 2001]. The
Tmax, Tmin, and Tavg variables were also used to calculate
Tday and VPD. In addition, 1 km resolution USGS Global
30 Arc‐Second (GTOPO30) DEM (http://eros.usgs.gov/

products/elevation/gtopo30/gtopo30.html) information was
used to calculate pixel‐wise atmospheric pressure with cor-
rections for deviations from STP (e.g., equation (15)) and to
analyze topographic complexities around the 82 flux towers.
The relatively coarse NASA SRB radiation and NNR
meteorology data were interpolated to the 8 km resolution
ET modeling grid and 1 km tower footprint spatial scales for
the ET/LE estimates using bilinear interpolation.

3.3. Evaluation of ET Algorithm Performance

[26] To evaluate ET algorithm performance, we produced
two sets of LE/ET estimates at the tower level using our ET
algorithm. The two sets of estimates were derived from
respective tower measured and reanalysis meteorology inputs
spatially interpolated to the 1 km tower locations. We then
compared the two sets of LE/ET estimates with measured
values from the eddy covariance flux towers at daily and

Table 2. Details of the 48 FLUXNET Tower Sites Used for Independent Validation of the ET Algorithm Results

LC Site Abbr. Years Latitude Longitude Country References

BENF (12 sites) SWDeg 2001–2005 64.19 19.57 Sweden Sagerfors et al. [2008]
ICGun 1996–1998 63.83 −20.22 Iceland Thorgeirsson and Gudmudson [2000]
FISii 2004–2005 61.83 24.19 Finland Suni et al. [2003]
UKAbe 1997–1999 56.62 −3.80 UK Clement et al. [2003]
CANS1 2002–2005 55.88 −98.48 Canada Litvak et al. [2003]
CANS3 2001–2005 55.91 −98.38 Canada Litvak et al. [2003]
CANS7 2002–2005 56.64 −99.95 Canada Litvak et al. [2003]
CANS6 2001–2005 55.91 −98.96 Canada Litvak et al. [2003]
BEBra 1996–1999 51.30 4.52 Belgium Ceulemans [2000]
GEBay 1996–1999 50.15 11.87 Germany Tenhunen and Schulze [2000]
USWi4 2002–2005 46.74 −91.17 USA Noormets et al. [2007]
USWi9 2004–2005 46.62 −91.08 USA Noormets et al. [2007]

TENF (8 sites) USMe1 2004–2005 44.58 −121.50 USA Irvine et al. [2007]
USMe2 2002–2006 44.45 −121.56 USA Irvine et al. [2007]
USMe3 2004–2005 44.32 −121.61 USA Irvine et al. [2007]
USNR1 1998–2006 40.03 −105.55 USA Monson et al. [2005]
USNC2 2004–2006 35.80 −76.67 USA DeForest et al. [2006]
USSP1 2001–2003 29.74 −82.22 USA Powell et al. [2008]
USSP3 1999–2004 29.75 −82.16 USA Powell et al. [2008]
USKS1 2002–2003 28.46 −80.67 USA Dijkstra et al. [2002]

EBF (3 sites) GUGUY 2004–2006 5.28 −52.93 French Guiana Bonal et al. [2008]
USKS2 2000–2006 28.61 −80.67 USA Dijkstra et al. [2002]
INPal 2002–2003 −2.35 114.04 Indonesia Hirano et al. [2007]

DBF (1 site) USMMS 1999–2006 39.32 −86.41 USA Schmid et al. [2000]
MF (10 sites) SWNor 1996–1998 60.08 17.47 Sweden Lindroth [2000b]

CAOAS 2002–2004 53.63 −106.20 Canada Barr et al. [2006]
BEVie 1996–1998 50.30 6.00 Belgium Aubinet et al. [2001]
USSyv 2001–2003 46.24 −89.35 USA J. Tang et al. [2009]
JATes 2001–2005 45.35 142.09 Japan Takagi et al. [2009]
USBar 2004–2006 44.06 −71.29 USA Jenkins et al. [2007]
JATom 2001–2003 42.74 141.52 Japan Kobayashi et al. [2007]
USLPH 2002–2005 42.54 −72.18 USA Hadley et al. [2008]
ITCol 1996–1997 41.87 13.63 Italy Valentini [2000]
USDix 2005–2006 39.97 −74.43 USA Clark et al. [2010]

CSH (1 site) USSO2 1997–1999 33.37 −116.62 USA Lipson et al. [2005]
OSH (1 site) USIvo 2003–2006 68.49 −155.75 USA Epstein et al. [2004]
WSV (1 site) USVar 2000–2006 38.41 −120.95 USA Ryu et al. [2008]
SV (1 site) AUVir 2001–2003 −19.88 146.55 Australia Leuning et al. [2005]
GRS (7 sites) CALTH 2002–2004 49.71 −112.94 Canada Wever et al. [2002]

USBkg 2004–2006 44.35 −96.84 USA Gilmanov et al. [2005]
CHXil 2003–2006 44.13 116.33 China Yuan et al. [2007]
CHHai 2002–2004 37.60 101.30 China Zhao et al. [2007]
USARc 2005–2006 35.55 −98.04 USA Fischer et al. [2007]
USGoo 2002–2006 34.25 −89.87 USA Gilmanov et al. [2005]
USWkg 2004–2006 31.74 −109.94 USA Scott [2010]

CRP (3 sites) HUHeg 1997–2005 46.96 16.65 Hungary Barcza et al. [2009]
USRo1 2004–2006 44.71 −93.09 USA Baker et al. [2007]
USNe3 2001–2006 41.18 −96.44 USA Suyker and Verma [2009]
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monthly time scales. This process ensured that the tower level
LE/ET results represented the dominant land cover class of
the local tower footprint rather than the composite regional
land cover attributes of the overlying 8 km resolution grid
cell of the global LE/ET database. Previous research [e.g.,
K. Zhang et al., 2008] has shown that coarse NNR meteo-
rology reanalysis can introduce considerable uncertainty in
capturing local micrometeorology in some regions. We com-
pared the two sets of model simulations to attribute LE/ET
uncertainties between model logic error and errors due to
the coarse scale reanalysis meteorology relative to tower
observations. The final 8 km global LE/ET estimates are the
composite values of every vegetation type and open water
body delineated by the 500 m MODIS‐IGBP land cover
product within each 8 km grid cell. The tower‐level LE/ET
estimates driven by the NNR reanalysis are actually com-
ponents of the final 8 km composite LE/ET falling over the
tower footprints; thus, the validation of the tower‐level esti-
mates also serve as validation of the final 8 km LE/ET results.
Three statistical variables were used to quantify algorithm
performance, including mean residual difference (MR), root
mean square error (RMSE), and simple correlation coefficient
(r) between model estimates and tower measurements. The
residuals are defined as the “true” values, namely, tower
measurements minus model estimates. The MR is the mean
value of the residuals and provides a way to quantify the bias
of the estimates relative to the measurements, while the
RMSE is used to describe the accuracy of the estimations. The
r parameter is used to evaluate the strength of the relation-
ships between the model results and tower observations.
[27] We verified the final global 8 km resolution ET

calculations at the river basin level by comparing the model
results with alternative ET estimates inferred from the long‐
term water balance: Ds = P−ET−R. For periods of 5 years
or more, the average change in basin water storage is neg-
ligible compared to precipitation, evaporation, and runoff
[e.g., Hobbins et al., 2001]. Given the condition of Ds ¼ 0,
the multiyear average water balance can be written as ET =
P − R. We denoted ET as ETInfrred and the multiyear average
basin‐scale ET derived from the remote sensing ET products
as ETRS in this study. We chose 261 major global basins
with relatively good records of stream flow discharge and
precipitation to conduct the comparison. These basins cover
61% of global vegetated area, vary in drainage area from
thousands to millions of square kilometers, and span the
major global climate and vegetation zones. The observed
steam flow data were compiled and provided by Dai et al.
[2009]. The ETRS and ETInferred variables were compared
for the same periods between 1983 and 2006 that vary with
the discharge data availability of each basin. The precipitation
data were obtained from theGlobal Precipitation Climatology
Center (GPCC) monthly precipitation database [Rudolf and
Schneider, 2005]. The GPCC precipitation data are provided
at 0.5° resolution and produced from surface gauge network
observations. The GPCC precipitation data were interpolated
to the 8 km resolution ETmodeling grid for basin‐level water
balance estimates using bilinear interpolation.

3.4. Uncertainty in Reanalysis Meteorology Inputs
and Impacts on LE Estimation

[28] We used the root mean squared deviation (RMSD)
metric to quantify differences between interpolated NNR

and NASA/GEWEX SRB meteorology at the site level and
tower‐measured meteorology and between tower‐driven and
reanalysis‐driven daily LE estimates. The RMSD statistic is
defined as

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x1;i � x2;i
� �2s

; ð21Þ

where n is the sample size; x1,i is the measured value or
measurement‐driven estimate; and x2,i is the reanalysis value
or reanalysis‐driven estimate.
[29] We first evaluated overall accuracies of the five major

meteorological variables used to drive our ET algorithm
from NNR meteorology and NASA/GEWEX SRB based net
radiation inputs, including Tmax, Tavg, Tmin, VPD and Rn, in
relation to available daily tower measurements from all tower
sites. We then analyzed the impacts of uncertainties in these
variables from the NNR meteorology and NASA/GEWEX
SRB solar radiation on the accuracies of reanalysis‐driven
daily LE estimates relative to corresponding tower‐driven
daily LE estimates. The RMSD values for the five variables
(i.e., RMSD(Tmax), RMSD(Tavg), RMSD(Tmin), RMSD(VPD),
and RMSD(Rn)) at the 82 tower sites were calculated. The
RMSD between the tower‐driven and reanalysis‐driven
daily LE estimates (RMSD(LE)) were also calculated. The
correlations of RMSD(LE) versus RMSD(Tmax), RMSD(Tavg),
RMSD(Tmin), RMSD(VPD) and RMSD(Rn) were then used
to analyze the impacts of meteorology reanalysis uncertainties
on the LE estimates.
[30] Finally, we calculated the standard deviation of DEM

elevations within 100 km × 100 km windows centered over
each of the 82 flux tower sites as a measure of topographic
heterogeneity surrounding individual tower sites. We then
compared these results with the RMSDs of the meteoro-
logical variables at the 82 sites to assess relations between
topographic heterogeneity and the accuracy of NNR mete-
orology and NASA/GEWEX SRB solar radiation in rep-
resenting local tower conditions.

4. Results

4.1. Retrieved Biome‐Specific Potential Canopy
Conductance Versus NDVI Functions

[31] Values of g0 derived from tower measured surface
energy fluxes and meteorology from the 34 algorithm
development sites are plotted in Figure 2 against satellite‐
observed NDVI values of pixels overlapping the respective
tower footprints for the 10 global biome types, including the
TENF and BENF land cover subgroups. For all biome
types, g0 generally follows a sigmoid response curve with
increasing NDVI that gradually levels off at higher NDVI
values. The derived empirical parameters for the biome‐
specific g0 versus NDVI relationships and other parameters
used are listed in Table 3. The NDVI is an effective sur-
rogate for canopy density. The reduced slope of this rela-
tionship at higher NDVI levels reflects increasing shading
of individual leaves and leaf boundary layer adjustments
with increasing canopy density. Higher canopy density can
increase leaf boundary layer thickness and correspondingly
reduce leaf boundary layer and canopy conductance relative
to lower canopy density under the same meteorological
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Table 3. The Biome Properties Look‐up Table (BPLUT) Used for the NDVI‐Based Global ET Algorithms

Parameters BENF TENF EBF DBF CSH OSH WSV SV GRS CRP Sources

Tclose_min (°C) −8 −8 −8 −6 −8 −8 −8 −8 −8 −8 1,2
Topen_max (°C) 40 40 50 45 45 40 50 40 40 45 3,4
VPDclose (Pa) 2800 2800 4000 2800 3300 3700 3200 5000 3800 3800 1,2,3
VPDopen (Pa) 500 500 500 650 500 500 500 650 650 650 1,2,3
Topt (°C) 12 25 40 28 19 10 32 32 20 20 3,4
b (°C) 25 25 40 25 20 30 28 30 30 30 3
k (Pa) 150 200 300 200 400 50 900 800 500 450 3
ga (m s−1) 0.03 0.03 0.03 0.04 0.01 0.005 0.002 0.001 0.001 0.005 3,5
gtot (m s−1) 0.002 0.004 0.006 0.002 0.001 0.012 0.0018 0.001 0.001 0.003 3
gch (m s−1) 0.08 0.08 0.01 0.01 0.04 0.04 0.04 0.04 0.04 0.04 6
b1 (s m

−1) 208.3 133.3 57.7 85.8 202.0 178.6 0.2a 790.9 175 105 3
b2 (s m

−1) 8333.3 888.9 769.2 694.7 4040.4 178.6 24000a 8181.8 2000 300 3
b3 10 6 4.5 4 6.5 8 6.5a 10 6 3 3

aThe listed b1, b2, and b3 values for the WSV biome are for the first segment of the fitted g0 versus NDVI function when NDVI ≤ 0.64. When NDVI >
0.64, the b1, b2, b3, and b4 parameters are set to 57.1, 3333.3, 8, and −0.01035, respectively; 1: Zhao et al. [2008]; 2: Mu et al. [2007]; 3: this study;
4: Larcher [2003]; 5: Monteith and Unsworth [2007]; 6: Thornton [1998].

Figure 2. Scatter plots of calculated average potential surface conductance values derived from tower
measurements (g0) versus corresponding NDVI values from the AVHRR GIMMS data set and empirical
fitted relationships between g0 and NDVI using sigmoid functions for TENF, BENF, EBF, DBF, CSH,
OSH, WSV, SV, GRS, and CRP vegetation types. Error bars denote the standard deviations of g0. Gray
areas correspond to the 99% posterior limits of the fitting model uncertainty derived from an adaptive
MCMC method [Haario et al., 2006].
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conditions. These effects provide a negative feedback for
transpiration so that stomatal conductance has less effect on
canopy water loss at higher NDVI and canopy density levels
than would be expected from an analysis of individual
leaves [Jarvis and McNaughton, 1986]. The error bars show
that there is variability in g0, which generally falls between
0.0005 and 0.002 m s−1. The SV, WSV, and CSH biomes
have the lowest variability in g0; EBF, DBF, and CRP
biomes have the highest g0 variability, and TENF, BENF,
OSH and GRS biomes show intermediate g0 variability. The
fitted g0 versus NDVI functions using the means of g0
should not significantly affect ET estimates considering the
generally low variability in g0.
[32] The derived g0 versus NDVI relationships for the

10 biome types show clear differences among each other
despite having similar functional shapes; these differences
reflect variations in leaf traits and physiologies among the
different biome types. The relationship between g0 and
NDVI for the TENF group shows an upward shift relative to
the BENF group, indicating that climate influences leaf
traits and physiological responses within the broader ENF
biome type. The g0 values generally vary between 0.001
and 0.012 m s−1 and are biome specific. For the same values
of NDVI, g0 values are highest for the EBF and DBF biome
types followed by the CRP, GRS, TENF, and BENF types,
while the CSH, OSH, WSV, and SV types have the lowest
g0 values. These results are similar to reported values of
maximum stomatal conductance determined for 15 global
flux towers by Leuning et al. [2008]. We applied sigmoid
functions to describe the observed relationship between g0
and NDVI in Figure 2. The fitted curves for the 10 biome
types are also shown in Figure 2 and show generally
favorable agreement with the tower observations. The fitted
curves explain 81%, 55%, 77%, 55%, 54%, 24%, 86%,
31%, 77%, and 60% of the variation in g0 for the BENF,
TENF, EBF, DBF, CSH, OSH, WSV, SV, GRS, and CRP
types, respectively. The derived 99% posterior distributions
of the g0 versus NDVI relationships are generally narrow
for each biome type (Figure 2). However, there are large
uncertainties in these relationships at higher NDVI values
(>0.80) for several biome types, including EBF, DBF, CSH,
WSV, and GRS; this is due to less data and larger variations
in the relationships between g0 and NDVI at these higher
canopy densities. The larger uncertainties in the fitted g0
versus NDVI relationships at these higher NDVI levels
may introduce larger uncertainties in the corresponding
LE/ET calculations.

4.2. ET Algorithm Performance Relative to Tower
Measurements

4.2.1. Development Tower Set Results
[33] We produced two sets of daily LE estimates at the

tower level. The first set was produced using tower‐
measured meteorology (hereafter called tower‐driven re-
sults), while the second set was produced using daily NNR
meteorology and NASA/GWEX SRB solar radiation inputs
(hereinafter called reanalysis‐driven results). We then com-
pared these algorithm results with corresponding ET mea-
surements from the respective flux towers. The statistical
summaries of ET algorithm performance for the development
sites are plotted in Figure 3. The MR statistics of the tower‐
driven daily LE estimates are within ±20 W m−2, while

RMSE values are below 32 W m−2 for all 34 sites (Figure 3).
The correlation coefficients between tower‐driven daily LE
estimates and daily LE observations are higher than 0.6. The
lowest r value is 0.649 at the USWRC site (Figure 3). Overall,
there is no substantial difference in ET algorithm perfor-
mance among the different biome types.
[34] The daily LE simulations driven by NNR meteorol-

ogy and NASA/GEWEX SRB solar radiation inputs are
similar to the results derived from the tower‐measured
meteorology. However, the reanalysis‐driven simulations
have generally larger MR and RMSE differences and
lower correlation coefficients relative to the tower‐derived
results, which are attributed to differences between the
coarse (1.9° × 1.875° resolution) NNR meteorology and
NASA/GEWEX SRB solar radiation (at the 1.0° × 1.0°
resolution) and local micrometeorology within the tower
footprints. Insufficient representation of local tower meteo-
rological conditions by the coarser NNR and/or NASA/
GEWEX SRB inputs substantially reduce accuracy of the
reanalysis‐driven daily LE estimates at several sites, includ-
ing USBLO, AUWAC, BRSA1, USSRM, and USAUD.
However, this does not necessarily mean that the reanalysis‐
driven LE estimates have large biases and uncertainties at
regional scales because these results may actually be more
representative of surrounding landscape conditions than the
local tower footprint.
[35] The daily time series of modeled LE fluxes derived

from tower‐measured meteorology and meteorology reanal-
ysis inputs are plotted with corresponding tower LE mea-
surements in Figure 4 for representative tower sites from the
algorithm development set. Each of the selected towers
represents the longest measurement record for the respective
biome type. There are some uncertainties in the model re-
sults at several sites. For example, both sets of model results
at CAOBS tend to underestimate mid‐season ET values.
There are many low LE values in summer from the
reanalysis‐driven ET results at USBLO, which are caused
by considerable overestimation of NNR VPD inputs for this
period. Overall, both sets of model results generally agree
well with tower observations and capture observed LE
seasonality and interannual variability and associated dif-
ferences among the global biomes represented.
4.2.2. Validation Tower Set Results
[36] ET algorithm performance for the validation tower

set was similar to the results from the algorithm develop-
ment tower set (Figure 5), although the MR and RMSE
statistics for the validation set have slightly wider distribu-
tions than the algorithm development set. The MR values of
the tower‐driven daily LE estimates fall within ±20 W m−2

for 44 sites and within ±30 W m−2 for the remaining four
validation sites (Figure 5). The RMSE values of tower‐
driven LE estimates are below 45 W m−2 for all 48 vali-
dation sites, of which 45 sites have RMSE differences below
32 W m−2 (Figure 5). Correlation coefficients between tower
meteorology based daily LE estimates and tower observa-
tions are generally higher than 0.6, while the lowest r value
is 0.24 for the USSO2 site (Figure 5).
[37] The reanalysis‐driven daily LE simulations have

similar accuracies as the tower‐driven results for most sites
but markedly lower accuracies at some sites due to differ-
ences between reanalysis and local tower meteorology.
Figure 6 shows the time series of modeled daily LE fluxes
driven by tower measurements and reanalysis inputs with
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corresponding tower LE measurements for representative
tower sites from the validation set. Each of the selected
towers represents one biome type with the longest record
within the respective tower group. There are large differ-
ences between modeled and measured LE values at several
sites. For the USNR1 site, there are many measured high LE
values during winters in 1999, 2000, 2001, and 2002, but
these patterns do not show in the following years, indicating
that the large winter LE variations in the earlier years may
be an artifact of measurement errors. Both tower‐driven and
reanalysis‐driven results tend to overestimate LE during the
early seasons at USKS2 but underestimate LE during the
middle seasons at CAOAS. The low correlations between
LE simulations and LE measurements at USSO2 are to some

extent due to lack of variation in satellite‐observed NDVI
and small LE sample size for comparison. Moreover, this
site is located in the California Mediterranean climate
zone where plant transpiration can be greatly impacted by
occasional precipitation and fog events that are not
directly captured in our ET algorithms. Despite these un-
certainties in the LE simulations, both sets of model results
generally correspond well with the tower observations and
capture observed LE seasonality and interannual variability
and associated differences among the major global biomes
represented.
[38] For MF tower sites, LE/ET was computed as a

weighted composite of all forest types within the tower
footprint including ENF, EBF, DNF, and DBF, as deter-

Figure 3. Comparisons of modeled and measured daily LE for the 34 algorithm development tower
sites. The statistics include mean residual (Observation‐Estimate) (MR), root mean square error (RMSE),
and correlation coefficient (r) between modeled and measured values. The modeled results include esti-
mates driven by (1) tower‐measured meteorology (closed circles in gray) and (2) NNR meteorology (open
circles). The site names are labeled in gray from top to bottom in the same order of the corresponding
statistical values for the tower‐driven results in each panel, while the site names are listed in black from
bottom to top for the reanalysis‐driven results in each frame. The cross‐site means and standard devia-
tions of the three statistics are also plotted. All r values are significant with 99% confidence.
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Figure 4. Time series of daily measured and modeled latent heat flux (LE: W m−2) using the NDVI‐
based ET algorithm driven by tower‐measured and NNR meteorology for the representative tower sites
with the longest (3–15 years) records for their respective land cover classes from the algorithm develop-
ment tower set. The r and RMSE statistics are also listed for the two sets of simulations for each site. All r
values are significant with 99% confidence. The time series and statistics of modeled LE driven by tower‐
measured and NNR meteorology are marked in gray and black, respectively.
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mined from satellite remote sensing–based tree cover con-
tinuous fields data. This method accounts for the effects of
varying tree compositions on the aggregate functional
response of mixed forest stands and was evaluated at 10 MF
tower sites across the global domain, including 3, 2, and
5 sites in Europe, Asia, and North America, respectively
(Table 2). The two sets of simulations driven by tower and
reanalysis meteorology inputs at these MF tower sites show
generally similar LE/ET accuracies as non MF tower sites,
with higher correlation coefficients than some biome types
(Figure 5).
4.2.3. Evaluation of Monthly ET Estimates
[39] On a monthly basis, the model ET results derived

from both tower‐measured and reanalysis meteorology inputs
agree well with ET observations from the 82 tower sites,
including both algorithm development and validation sets
(Figure 7). The tower‐driven results account for approxi-
mately 84% of the observed variation in monthly ET mea-
surements with respective RMSE andMR differences of 13.0
and −0.8 mm month−1, while the reanalysis‐derived results

account for 80% of the variation in measured ET with
respective RMSE and MR values of 15.3 and −3.0 mm
month−1. The local tower conditions were poorly represented
by the coarse NNR meteorology at several sites, reducing the
overall performance of reanalysis‐driven results. The
USSRM site located in Arizona’s arid area is the most
obvious example. The coarse NNR meteorology poorly
captures the air vapor pressure around this woody savanna
site, resulting in substantial underestimates of ET and the flat
distribution of the scatter points (solid triangles) in the lower
left portion of Figure 7b. However, the reanalysis‐driven
results show similar performance relative to tower‐driven
results at most sites. Although the model results show small
global biases for both algorithm development and validation
sets, the high coefficients of determination (i.e., R2), low
RMSE, and MR differences for the two sets of monthly ET
results indicate that the algorithm generally captures observed
seasonal and inter‐annual variations and site‐to‐site differ-
ences in ET.

Figure 5. Comparisons of modeled and measured daily latent heat flux at the 48 validation tower sites.
The meanings of the symbols and the organization of the graphs are the same as those in Figure 3. All r
values are significant with 99% confidence.
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4.3. Evaluation of ET at the Basin Level

[40] The satellite‐based global ET results were evaluated
against inferred basin‐scale average ET derived from
observed discharge and gauge‐based (GPCC) precipitation
records for 261 global basins (Figure 8). Figure 8a shows
the global distribution of selected basins and the relative
difference (%) between ETRS and ETInferred defined as
(ETRS − ETInferred ) × 100 / ETInferred . Figure 8b is the
scatter plot of the relationship between ETRS and ETInferred;
these results indicate that ETRS and ETInferred are similar for
most basins (RMSE = 186.3 mm yr−1; R2 = 0.80). The
relative difference between ETRS and ETInferred falls within
±50%, ±20%, and ±10% for 95%, 68%, and 47% of the area
covered by the 261 basins, respectively. The largest ETRS

and ETInferred difference occur in some northern high lati-

tude, subtropical and tropical basins (Figure 8a). ETRS is
much higher than ETInferred in some northern high‐latitude
basins including the Yukon, Mackenzie, Yenisei, Lena,
Kolyma, Pechora, Indigirka, and Yana basins (Figure 8a).
The mean ETRS and ETInferred difference in these basins is
approximately 100 mm yr−1. This systematic difference is at
least partially attributable to the substantial underestimation
of GPCC precipitation from snow and wind‐related biases
of gauge observations and the sparse weather station net-
work density in the northern high latitudes [Yang et al.,
2005]. Zhang et al. [2009] showed that the GPCC product
underestimates precipitation by 7.15 mm month−1 in rela-
tion to bias‐corrected observations in these regions [Yang
et al., 2005]. The GPCC precipitation bias can contribute
to an underestimation of 90 mm yr−1 in ETInferred, which

Figure 6. Time series of daily measured and modeled latent heat flux (LE: W m−2) using the NDVI‐
based ET algorithm driven by tower‐measured and NNR meteorology for representative tower sites with
the longest (2–9 years) measurement records in their respective land cover classes from the validation
tower set. The r and RMSE statistics are also listed for the two sets of simulations for each site. All r
values are significant with 99% confidence. The time series and statistics of modeled LE driven by
tower‐measured and NNR meteorology are marked in gray and black, respectively.
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approximates the average difference between ETRS and
ETInferred in these basins. ETRS is lower than ETInferred in
Western Africa and Indian subcontinent basins, indicating
that the RS model may underestimate actual ET in these
regions. However, uncertainty in the coarse GPCC precipi-
tation and discharge measurements may also contribute to
ETRS and ETInferred differences in these regions. Although
there are large differences between ETRS and ETInferred in

some basins, the generally favorable agreement in these
results for most areas indicates that the RS‐based ET pro-
duct is relatively accurate on a global basis.

4.4. Reanalysis Meteorology Impacts on LE Estimation

[41] Overall, the NNR temperature variables (Tmax, Tavg,
and Tmin) show the highest correspondences with the tower

Figure 8. Comparisons between multiyear (1983–2006) average RS‐based ET (ETRS) and inferred ET
(ETInferred) from basin‐scale water balance calculations for 261 major global basins: (a) difference (%)
between ETRS and ETInferred and (b) scatter plot of ETRS versus ETInferred.

Figure 7. Comparisons between monthly modeled ET (mm month−1) and tower measurements for the
82 tower sites; the simulations in Figure 7a are derived from tower‐measured meteorology, while simula-
tions in Figure 7b are derived from NNR meteorology and NASA/GEWEX SRB solar radiation inputs.
These relationships are significant with 99% confidence.
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observations and explain 90% or more of variability in the
observations, while the NNR VPD explains the lowest
variability in the tower site observations (Table 4); the
correspondence (R2) between tower observations and
NASA/GEWEX SRB results for Rn is generally intermediate
between these results. The error distributions for the tem-
perature variables are also narrow, and the mean errors for
these temperature variables are close to zero. Both NNRVPD
and NASA/GEWEX SRB‐based Rn are generally over-
estimated relative to the observations and show considerable
error distributions. The statistics in Table 4 suggest that the
largest uncertainties in input meteorological parameters are
from NNR VPD followed by SRB based Rn, while the NNR
temperature variables have the lowest uncertainties. These
results are also consistent with previous studies [Zhang et al.,
2007; K. Zhang et al., 2008].
[42] The effects of uncertainties in the five meteorological

variables on LE/ET calculations are site specific. The cor-
relations of RMSD(LE) with RMSD(Tmax), RMSD(Tavg),
RMSD(Tmin), RMSD(VPD), and RMSD(Rn) for the 82 flux
tower sites are 0.21 (P = 0.06), 0.12 (P = 0.29), 0.02 (P =
0.86), 0.41 (P < 0.001), and 0.34 (P = 0.002), respectively,
indicating that uncertainties in the meteorological inputs
have variable impacts to reanalysis‐derived LE accuracy
at the different tower sites. For some sites, uncertainty in
reanalysis‐derived LE is mainly caused by uncertainty in a
single meteorological variable, e.g., AUHOW, USNR1, and
CAOAS sites. For other sites, uncertainty in reanalysis‐
derived LE is due to uncertainties in two or more meteoro-
logical variables, e.g., AUWAC, AUTUM, ITCOL, and
CALTH sites. Overall, RMSD(LE) has the strongest corre-
lation with RMSD(VPD), followed by RMSD(Rn) and
RMSD(Tmax). However, RMSD(LE) does not show clear
correspondence with RMSD(Tavg) or RMSD(Tmin). This
is consistent with the above findings that the uncertainties
in VPD and Rn are the major sources of uncertainty in the
reanalysis‐driven LE/ET estimates. Among the three vari-
ables, only RMSD(Tmax) showed a significant correlation
(r = 0.57; P < 0.001) with DEM heterogeneity within the
100 km × 100 km tower windows. Since temperature is highly
sensitive to elevation and slope‐aspect variations, greater topo-
graphic complexity surrounding individual towers reduces the
correspondence between the coarse scale meteorological
conditions represented by the NNR reanalysis and associated
LE/ET simulations and local tower conditions. The NNR
atmospheric humidity andNASA/GEWEXSRBproductsmay
be more impacted by accuracy in other forcing data includ-
ing cloudiness, atmospheric aerosols, and atmospheric ozone
concentrations [Kistler et al., 2001;Pinker and Laszlo, 1992].

4.5. Global ET Patterns

[43] We applied the NDVI‐based ET algorithm with daily
NNR surface meteorology and NASA/GEWEX SRB solar
radiation inputs to calculate daily ET globally at 8 km
spatial resolution from 1983 to 2006. The multiyear
(1983–2006) average annual ET is plotted in Figure 9 and
shows strong regional variations and latitudinal gradients
corresponding to global climate patterns. Tropical rain-
forests in South America, Africa, and Southeast Asia have
the highest annual ET, while drier areas within temperate and
subtropical regions and the Arctic have the lowest annual ET.
Annual ET values for temperate and boreal forests are gen-
erally intermediate between these two extremes. The esti-
mated ET over water bodies is generally much larger than for
adjacent vegetated areas within the same climate zone due to
lower surface resistance to evaporation over water relative to
land. The global terrestrial average annual ET weighted by
area is 539.3 ± 9.1 mm yr−1, which is about 0.60 ± 0.02 of the
global average annual GPCC precipitation. The estimated
global average ET to P ratio is similar to values reported
from previous studies [e.g., L’vovich and White, 1990; Alton
et al., 2009]. The Evergreen Broadleaf Forest biome has the
largest average ET of 1138 ± 175 mm yr−1 followed by
Woody Savanna (749 ± 209 mm yr−1), Deciduous Broadleaf
Forest (635 ± 200 mm yr−1), Savanna (676 ± 183 mm yr−1),
Permanent Wetland (529 ± 311 mm yr−1), Cropland (507 ±
157 mm yr−1), Mixed Forest (361 ± 124 mm yr−1), Closed
Shrubland (352 ± 166 mm yr−1), Grassland (311 ± 193 mm
yr−1), Evergreen Needleleaf Forest (294 ± 81 mm yr−1),
Deciduous Needleleaf Forest (243 ± 29 mm yr−1), and Open
Shrubland (202 ± 83mm yr−1). Open water bodies cover
about 3.4% of the global land area as inferred by the 500 m
MODIS‐IGBP land cover product, while mean annual ET
from these water bodies is 906 ± 561 mm yr−1 and represents
approximately 7% of total annual terrestrial ET.
[44] The magnitudes and spatial patterns of the estimated

global ET are generally consistent with the literature. The
study of Bruijnzeel [1990] indicated that annual ET ranges
from 1310 to 1500 mm in humid tropical forests. Frank and
Inouye [1994] used 19–25 year climate records to calculate
annual ET at 94 sites representing 11 biomes and reported
annual ET of 202 ± 34, 380 ± 43, 588 ± 47, 884 ± 71, and
1363 ± 77 mm yr−1 for tundra (10 sites), taiga (11 sites),
broadleaf forest (10 sites), savannah (4 sites), and wet trop-
ical forest (10 sites), respectively. Measurements of water
vapor fluxes from 1 September 2003 to 31 August 2004 in a
74 year mixed‐wood boreal forest in Ontario, Canada, show
an annual water loss of 480 ± 30 mm [Pejam et al., 2006].
Giambelluca et al. [2009] reported mean annual ET values of
823 and 689 mm for two tropical savanna sites in central
Brazil using tower eddy covariance measurements. Eddy
covariance measurements for a poplar plantation in Northern
Italy revealed cumulative ET over three growing seasons
(April–September) of 388, 471, and 484 mm for 2002, 2003,
and 2004, respectively [Migliavacca et al., 2009].
[45] The multiyear mean seasonal patterns of ET from

1983 to 2006 using the NDVI‐based ET algorithm with
daily NNR surface meteorology and NASA/GEWEX SRB
solar radiation inputs shows distinct global seasonality
(Figure 10). The tropical rain forest regions show year‐
round high ET values, while tropical dry forest and savanna
regions show alternate wet and dry seasons. The temperate

Table 4. Statistics for the Comparison of Daily NNR
Meteorological Variables and NASA/GEWEX SRB Net Radiation
Relative to Daily Tower Observationsa

Variables MR Q1 M Q3 RMSE R2

Tmax (°C) −0.08 −2.44 0.08 2.48 4.32 0.90
Tavg (°C) 0.10 −1.65 0.05 1.81 3.17 0.94
Tmin (°C) −0.11 −2.39 −0.29 2.06 4.08 0.90
VPD (Pa) −84.49 −225.94 −9.49 120.17 464.81 0.68
Rn (W m−2) −1.71 −20.47 −3.94 13.97 34.01 0.77

aThe sample size for each variable is 97,655. The statistics include mean
(MR), median (M), first quartile (Q1), and third quartile (Q3) of the errors
defined as the measured values minus the reanalysis values, root mean
squared error (RMSE), and coefficient of determination (R2).
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and boreal‐Arctic regions have much higher seasonal vari-
ability than the tropics.

5. Discussion and Conclusions

[46] We extended an NDVI‐based ET algorithm, origi-
nally developed for the northern high latitudes [Zhang et al.,

2009], to the global domain by deriving biome‐specific
maximum canopy conductance functions for all major global
biomes. The algorithm was modified using AVHRR
GIMMS NDVI and corresponding tower eddy‐covariance
measurement derived canopy conductances from 34 globally
distributed sites. The algorithm was applied using two sets of

Figure 10. Multiyear (1983–2006) mean seasonality of global ET.

Figure 9. Global map of multiyear (1983–2006) mean annual ET as derived from the AVHRR GIMMS
NDVI record, NNR daily meteorology, and NASA SRB solar radiation inputs. Barren land (in gray) and
ocean (in white) areas were excluded from the model calculations.
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daily meteorology inputs, including in situ tower measure-
ments and relatively coarse‐resolution NNR and NASA/
GEWEX SRB gridded global products. The model was
validated using tower ET measurements at the 34 develop-
ment sites and 48 additional, independent tower sites en-
compassing the major global biomes. The AVHRR NDVI
versus corresponding tower measurement derived potential
canopy conductance values follow sigmoid‐type response
curves for the major biome types but with distinct differences
among different biomes that follow characteristic variations
in climate and associated plant adaptations; these results
indicate that the NDVI‐based canopy conductance algorithm
is robust and more biophysically based than alternative
approaches that employ a constant, maximum canopy con-
ductance parameterization for individual biomes. The two
sets of LE/ET simulations at the tower level show generally
favorable agreement with tower measurements at daily and
monthly time scales, although the tower‐driven results show
generally better accuracy than the reanalysis‐driven results.
These results indicate that the ET algorithm provides a rea-
sonably accurate measure of spatial patterns and daily to
annual temporal dynamics in global ET and corresponding
land‐atmosphere water and latent energy exchanges. The
global ET results capture observed spatial and temporal
variations at the global scale and compare favorably with
ET inferred from basin‐scale water balance calculations for
261 basins covering 61% of the global vegetated area.
Through this study, we constructed an ET climatology based
on long‐term satellite observations for each pixel of the
global vegetated land area.
[47] Two potential sources of uncertainty in the ET cal-

culations are linked to corresponding uncertainties in tower
eddy flux measurements and satellite‐observed NDVI used
for model development and validation. First, we used the
8 km AVHRR GIMMS NDVI record to derive NDVI values
at each tower site. The tower measurement footprints are
typically about 1 km in size [Baldocchi, 2008] and much
smaller than the resolution of the overlying GIMMS NDVI
grid cell. The satellite derived NDVI may not adequately
capture subgrid scale vegetation signals at these sites,
especially in areas of complex topography or heterogeneous
land cover; thus, model error for some tower sites may be
attributed to inaccurate NDVI representation of tower foot-
print conditions. The ET algorithm performance may also be
negatively impacted by uncertainty in tower eddy flux
measurements and associated lack of energy balance closure
due to complexity in wind patterns, footprint representation
and sampling variability [Twine et al., 2000; Wilson et al.,
2002]. Twine et al. [2000] reported that the discrepancy in
energy balance closure is generally about 10%–30% when
the eddy covariance method is used. These tower mea-
surement uncertainties are within the range of accuracy of
the algorithm ET calculations but may also introduce addi-
tional model error because tower LE measurements are used
to derive biome‐specific relationships between g0 and
NDVI. In addition, the ET algorithm in this study does not
explicitly consider the impacts of precipitation events on
surface conductances due to the limited availability of
accurate global precipitation data, which may introduce ET
estimation uncertainty.
[48] Despite the above uncertainties, the ET algorithm

performs well across the observed range of global biomes,
vegetation conditions, and climatic regimes as indicated by

favorable agreement with LE/ET measurements from 82
diverse tower sites, annual ET values reported in the liter-
ature and basin scale ET estimates inferred from the regional
water balance. The algorithm is also simple enough to apply
with long‐term global satellite NDVI records for evaluating
regional ET anomalies and climatologies, drought, agricul-
tural, and forest health monitoring and other applications.
The results of this study also represent a systematic and
continuous long‐term (24 year) global record of ET/LE with
well‐quantified accuracy useful for global assessment of ET
climatologies and climate change assessment of terrestrial
water and energy cycle dynamics and interactions.
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